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EXCITATION OF FORBIDDEN LINES IN GASEOUS NEBULAE
I. FORMULATION AND CALCULATIONS FOR 2p? IONS
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A formulation is given for electron collisions with ions in configurations 15s22s22p7 and 15?2522p53523p4.
The main approximation is neglect of coupling to other configurations. Hartree—Fock functions are
used for the ion states and the complete wave functions are expressed as sums of vector-coupled
anti-symmetrized products of ion functions and orbitals for the colliding electron. Variational
principles are used to obtain coupled integro-differential equations for the radial functions for the
colliding electron, and to correct results obtained from approximate solutions of these equations. All
algebraic reductions are carried out without the introduction of subsidiary approximations, and
conservation and reciprocity theorems are therefore satisfied exactly. Expressions are tabulated
for all algebraic coefficients.

Numerical calculations are made in two approximations: in the exact resonance approximation,
used only for p-waves, the wave functions are calculated with quadrupole interactions neglected;
and in the distorted wave approximation the wave functions are calculated from static central
potentials. Variational corrections are calculated and are found to be reasonably small. It is
concluded that the final corrected results should agree closely with results which would be ob-
tained from exact solutions of the coupled equations.

Collision strengths are calculated for all inelastic collisions in configurations 15225s22p7, ¢ = 1
to 5, for at least three different ecnergies, and for values of the residual charge z = 1, 2, 3, 4, 5 and
the limit of z -~ 0c0. Results may be interpolated for all members of the iso-electronic sequences.
Results for energies such that some channels are open and others closed are obtained by means
of extrapolation techniques.
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78 H. E. SARAPH, M. J. SEATON AND J. SHEMMING

1. INTRODUCTION

The spectra of gaseous nebulae were first observed by W. Huggins and described in a paper
published in these Philosophical Transactions in 1864. They are characterized by bright emis-
sion lines which are due to familiar permitted transitions in hydrogen and helium, and to
forbidden transitions in ions of oxygen, nitrogen, sulphur and other elements (Bowen
1928). It was suggested by Bowen that the permitted lines are excited by radiative recom-
bination and that the forbidden lines are excited by electron impact, and the correctness
of these ideas has been confirmed by all subsequent work. The present series of papers
is concerned with the calculation of excitation rates for the forbidden lines.

The ions which give rise to forbidden lines in the visible spectrum have configurations
247 and 3p? with ¢ = 2, 3 and 4; these configurations contain three terms (*P, D and 1§ for
g = 2 and 4 and %S, 2D and 2P for ¢ = 3). In many nebulae the strongest lines at A1 5007,
4959, are due to the transitions 1D —> 3P, and D — 3P, in the 152 252 2 configuration of O+,
A weaker line, at 14363, arises from the O2* 1§ — 1D transition. For sufficiently low electron
densities, collisional deactivation can be neglected and the forbidden line intensities are
then proportional to the rates of collisional excitation. In this case, the relative intensities of
the lines of a given ion, such as the O2* ratio (A1 5007, 4959)/1(14363), depend only on the
electron temperature and from the observed ratios temperatures can be deduced (Ambart-
sumian 1933; Menzel, Aller & Hebb 1941). At densities which obtain in typical nebulae,
it is found that collisional deactivation is important for some of the lines and that certain
intensity ratios are sensitive to both electron temperature and electron density. The in-
tensity ratio of the doublet, A1 3726, 3729, which results from the transition 2D — 4§ in
O, provides a particularly useful indication of electron density (Aller, Ufford & Van
Vleck 1949; Seaton & Osterbrock 1957). In general, it is possible to deduce both electron
temperatures and electron densities from the observed relative intensities of the forbidden
lines, and to deduce ion abundances, relative to hydrogen ion abundances, on comparing
forbidden line intensities with the intensities of hydrogen lines.

In addition to the forbidden lines in the visible, further forbidden lines will be emitted
in the ultraviolet and the infrared parts of the spectrum. The infrared lines, which are of
particular importance in connexion with studies of the thermal balance in nebulae, arise
from transitions between the fine structure components of the ground terms in ions with
configurations np, np?, np* and np®.

The first attempts to calculate the cross-sections for excitation of the forbidden lines were
made by Yamanouchi, Inui & Amemiya (1940), who considered OY% and by Hebb &
Menzel (1940) who considered O%". Hebb & Menzel expressed the collision cross-section
Q (i — j) in terms of a dimensionless parameter €(z, 5)

.o Q@

Q@ —J) :—#ﬂa%, (1-1)
where o, is the statistical weight of the initial ion level, k; = mv;/f where v; is the initial
velocity of the colliding electron, and g, is the Bohr radius. The parameters 2, which we
shall refer to as collision-strengths, are symmetrical in initial and final states, Q(z,7) = Q(J, 7).
It was shown by Hebb & Menzel that, when account is taken of long-range Coulomb
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EXCITATION OF FORBIDDEN LINES IN GASEOUS NEBULAE 79

forces, the collision strengths for positive ions remain finite at excitation thresholds. With a
Maxwell distribution of electron velocities the rate coefficient for collisional excitation is

. 8:63 x 1076 .. W,
- — - i/ .t -1 .
q(i—j) o T fQ(z,]) e WilkTd (kT) cm3s™1, (1-2)
where W, = Imv? and 7" (°K) is the temperature. If Q is taken to be a constant this reduces
to . -6
i) = SO0, ) ot emds (13

where E;; is the excitation energy. /

The work of Yamanouchi ¢t al. and of Hebb & Menzel, was discussed in detail by Bates,
Fundaminsky & Massey (1950) and criticized on the grounds that the results obtained
violated both conservation theorems and reciprocity theorems. The violation of conserva-
tion conditions resulted from the assumption of weak coupling between initial and final
states, and the use of perturbation theory expressions for the calculation of scattering ampli-
tudes. The violation of reciprocity conditions (the ‘post-prior’ discrepancy) resulted from
an inconsistency in the formulation employed; the expressions for the scattering ampli-
tudes were simplified on making the assumption that exact ion wave functions were to be
employed, but approximate ion functions were then substituted into these simplified
expressions.

In order to make improved calculations of the forbidden line cross-sections it was neces-
sary to develop better methods of treating electron exchange in collision problems. This was
considered by Seaton (1953a), who gave a formulation in terms of coupled integro-
differential equations. This formulation was such that conservation conditions are satisfied
automatically but the difficulty of the post-prior discrepancy was not completely overcome.
Calculations were made for O O*, O, N*, Ne?" and S* (Seaton 19534, b, 19554, b,
1958) and approximate estimates were obtained for other ions. These results have been used
extensively for the interpretation of nebular spectra. In recent years a great deal of effort
has been devoted to making accurate observations of the line intensities in gaseous nebulae
(see review article by Aller & Liller 1968) and to making accurate calculations of the
radiative transition probabilities (see review article by Garstang 1968).

The present series of papers describes the results obtained in an extensive new programme
of calculations of collision cross-sections. Improvements on the earlier work are possible in
consequence of advances in atomic collision theory and in the availability of high speed
computing facilities. All calculations for ions in 2p? configurations have been made at Uni-
versity College London and similar calculations for ions in 3p? configurations have been
made by Dr S.J. Czyzak and Mr T. K. Krueger of the Aerospace Research Laboratories,
Wright-Patterson Air Force Base, and Ohio State University.

The formulation employed is discussed in the present paper, and results are given for
2p¢ ions. Later papers will give results for 3p¢ ions and results obtained on using methods of
quantum defect theory to check the accuracy of the calculations and to make semi-empirical
corrections.

Some preliminary accounts of our work have been published previously (Shemming
1965 ; Saraph et al. 1966; Czyzak & Krueger 1967; Czyzak et al. 1967, 1968) and more
general reviews of collision processes in nebulae have been published by Seaton (19684, b).

I1-2
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80 H. E. SARAPH, M. J. SEATON AND J. SHEMMING

2. FORMULATION
2:1. General formulation of the collision problem

We consider clectron collisions with an ion containing N electrons and having a nuclear
charge Z. We denote the ion wave functions by

W (y, S, L;Mg, M, |1,2, ..., N), (2-1)

where 1, 2, ..., N indicate the space and spin coordinates of the ionic electrons. We use
capital Greek letters for wave functions which arc completely anti-symmetric. We introduce

one-electron orbitals g (im,m, 1) = sy, () Yo (£0) (1r) F(r) (2:2)

where y,, is a spin function, Y, a spherical harmonic, and F a radial function, and form

lmy
the vector-coupled functions

@S, LISLM M, |t715t) = > C%Lﬁnsz\{s Cﬁ'}fj',n,ML Wy, S; LM, My |t7Y) @(lmsmy|t),

3
S,
Mg, My, mgmy ( )
2:3

where {~! is written for the set of coordinates 1,2, ...,¢—1,¢+1, ..., N+ 1. Finally, we form

anti-symmetric functions
®(1,2,.., N+1) = SIS g (2:4)
5 Ly eeey QN/(N—F.[) ot @ sb).
We use a to indicate the set of quantum numbers y,S; L,/SLM M, and take the wave
functions for the entire system to be

¥y =3 p(a), (25)

where / specifies a boundary condition. The radial functions in ©4(«) are denoted by F,.
We take thesc radial functions to be such that ¥ is a solution of the Schrédinger equation,

(H-E)¥;=0 (2-6)
N+1 N+l N ¢
where H=-3% (VH—QZ) + i S 2 (27)
t=1 7 r=t+1t=1 Ty

is the Hamiltonian, in rydbergs, for the complete system. The total energy is

E=E +R, (2:)
where E_ is the ion energy and £2 the energy of the colliding electron. The radial functions
arc taken to be zero at the origin and to have asymptotic form

Fop(r) ~ ki {(sinx,) Copt (cos 5,) Doyl (29)
z - iz
where X, = kar—-;—laﬂ—l—k—ln (2k,r)+argl (la+1 —vk-«) (2-10)

and where z = (Z— N) is the residual charge on the ion. When standard phase conventions
are adopted, we may take the matrices C and D to be real.

The reactance matrix, R = DG, is real and symmetric and is diagonal in SLMM,.
Further, the elements diagonal in SLMM, are independent of MM, . The scattering matrix is
S = (1+4iR) (1 —iR)~! and the collision strengths are given by (Seaton 1962)

QiSiloyiSili) = 3 3 (25+1) (2LA+1) S8, L, ISL,y S LVSL) 2. (2111)
n*SL
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EXCITATION OF FORBIDDEN LINES IN GASEOUS NEBULAE 81

To obtain collision strengths for transitions between fine structure states it is convenient
to make a transformation to J;j coupling

Sy, S, L; J;ijJ,yi Si Li J{ U]’ J)

i

S, L J; S L J;
=A% | S0 ‘,—LilSL,ny,-’Lél’SL)A(é rog1,  (212)
SLo\S L J S L J

Qy;S; L, J ;7S Li J;)
=3 (2J41) |8(y; S L T4 d, v Si L T Uf' T) |~ (2-13)

i
These expressions may be simplified if one of the two terms contains only one fine structure
level. Using known properties of the transformation coefficients (Edmonds 1957) we obtain
U ’ ’ —_ ‘7‘(27‘!1{5’:]:) Q7 ’
Qy; S Ly, yiSiLi Ji) = (28741 (2L +1) Q(y; 8Ly, viSi Li)
if §;=0 orif L ,=0.

(2-14)

2:2. Variational principles
The asymptotic form (2-9) may be written
F ~ k~*{(sin x) G+ (cos x) D} (2:15)

in matrix notation, it being understood that quantities in italic type, without subscripts,

are diagonal matrices. Taking (sin7) o 1

. (2:16)

D = sin7+ (cos7) g,
we obtain F ~ k¥ {sin (x4-7) 4 (cos (x+7)) ¢} (2:17)
and R = [sin7+(cos7) p] [cos7— (sinT) p] L. (2-18)

Consider functions ' containing radial functions F,; with asymptotic form (2:17) and
functions (¥';+9'Y) containing radial functions (¥,,+-9F,;) with asymptotic form

a

F+0F ~ k=¥ {sin (x+71) + (cos (x+7)) (p +Jp)}, (2-19)
where it is to be noted that the diagonal matrix 7 is not varied. Defining matrices L and
L 4 0L with elements L/3’/i _ (lFﬂ'lH—EPFﬂ)’ (220)

Lyp+0Lgy = (Wp+0Wy|H—E'V,+0T)) (2-21)
we obtain the variational principle that, for small variations about the exact functions,
M{e—L}=0 (2-22)

(Kohn 1948).

If the condition (2-22) is satisfied for al/ possible small variations of the functions, consistent
with the asymptotic forms (2:17) and (2-19), then these functions must be exact solutions of
the Schrédinger equation. In practice we impose certain restrictions on the functions, such
as retaining only a finite number of terms in the expansion (2-5). In this case the ‘best’
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82 H. E. SARAPH, M. J. SEATON AND J. SHEMMING

functions may be determined by requiring that (2-22) should be satisfied for all small varia-
tions consistent with these restrictions.

A further use of the variational principle is to obtain corrections to the g matrix. Suppose
that we have approximate functions 1" containing matrices p’. An improved estimate for

pis ok — ol L. (2:23)

The error in p¥ is of quadratic order in the error in the wave functions.

With 7= 0 we have p = R. It sometimes happens that the elements of R are large.
This may be appreciated by considering one-channel cases, for which the phase-shift,
£ = arctan R, may be close to 4. When R is large the variational principle will not give
reliable results if 7 is taken to be zero. In practice the phases 7 are chosen to be such that p
is not large. The precise choice adopted will be discussed in §2-8.

Some use is also made of a variational principle for the scattering phase matrix,

g = arctan R.

Putting RX = XR where R is diagonal and X unitary, we have § = X (arctan R) X*. Using
trial functions with asymptotic form

Ft ~k~#{(sinx) cos E + (cosx) sin Et} (2-24)
we put 0§ = — L!. The corrected R matrix is
RX = [sin §!+ (cos &!) 0§] [cos E! — (sin E¢) §E] ! (2-25)

(Seaton 1967).
2-3. Atomic wavefunctions

We first consider a formulation in which closed shells are neglected (closed shells are
discussed in §2-6). Configurations np? contain terms S; L, listed in table 1. The wave functions
are constructed by using fractional parentage expansions:

W (npaSiLi|1,2, ... q) = T A1) Y (np? 'S, LinpS; L1, 2, ..., g —15q),  (2:26)
j

where the functions on the right-hand side are constructed using vector-coupling formulae
as in (2:3). A consistent set of fractional parentage coefficients 4, (7,j) is given in table 2.
Itshould be noted that, in the tables of algebraic coefficients, we use the abbreviated notation

AJBC|D JEF = AJ(BC)/D./(EF).

The approximate ion functions (2-26) are not eigenfunctions of the ion Hamiltonian
H,(1,2,...,q), but are such that

(' (np2S; Lir) | Hy ¥ (npS; L)) = 0(¢',2) E(npeS; Ly), (2-27)

where E(npeS; L;) will be referred to as the calculated ion energy. The energy integrals are
evaluated on expanding the electrostatic interactions,

1 A &

P 2 Py\(T). 1) yalry, 79)s (2-28)
12 2
' AJpA+1 <
where Yalry, 75) = {73/72A+1 ¢ 72)’} (2-29)
r3r] (ry < 1y).
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TABLE 1. TERMS IN 747 CONFIGURATIONS

/A \

q i S;L, q i S;L;
1and 5 1 2p 3 1 49
2 2D
2 and 4 1 p
an 2 ]D 3 2P
3 g 6 1 EAY
TABLE 2. FRACTIONAL PARENTAGE COEFFICIENTS
|
L g i j 4,(i, ) q i j 4,(i, )
! 1 1 1 1 4 1 1 1 /J3
P 2 1 1 1 2 —4/5/24/3
C 2 1 1 3 1/2
) 3 1 1 2 2 43/2
— 3 1/2
3 1 1 1 3 3 3
O 2 1 1/42
@) 2 —1/J2 5 1 3/4/5
A 3 1 —1/y2 2 1/J3
. 2 — /5342 3 +1/415
5 8 V23 6 1 1 1
5 " Note. In this table 4,/BC/DJEF stands for 4,/(BC)/DJ(EF).
<
7]
E TaBLE 3. COEFFICIENTS f,(p4, S;L;)
= q i So(p% S Ly) q i So(p9, 8, Ly)
2 1 —0-20 4 1 —0:60
9 +0-04 2 —0-36
3 +0-40 3 0-00
3 1 —0-60 5 1 —0-80
2 —0-24
3 0-00 6 1 —1-20
TABLE 4. COUPLED STATES IN np?lSL
g=1and5b g=3
e A - — A -
S 7 l S ) [
> Oand 1 1 L-1 0 2 L—1
\q 1 L+1 2 L+1
o 3 L-1
0and 1 1 L 3 1
=~ r " > 2 L
5 Ky 1 l 2 L+2
1 1 L-1 3 L
o * 1 L+1
®, 2 I3 1 2 L-1
« 2 L+1 2 L+1
3 L-1
3 1 L 3 L+1
-2
3 f 1 1 L
. 2 L+2 2 L-2
2 L+2
5 i é— { 3 L
+ 2 1 L
3 1 L
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84 H. E. SARAPH, M. J. SEATON AND J. SHEMMING

TABLE 5. THE COEFFICIENTS f,

I—L ¢ I'—L 5f,forqg =1, =bf,forqg =25 i [-L ¢ I'=L 5f,forq =3
-1 1 —1 (L-1)/(2L+1) 2 -1 2 -1 0
—1 1 +1 =3JLIL+1)/2L+1) 2 -1 2 41 0
+1 1 +1 (L+2)/2L+1) 2 -1 3 —1 =3JL2-1)/(2L+1)
01 0 -1 2 —1 3 +1 =3J(L-1)L/(2L+1)
2 +1 2 +1 0
—_9 _ _ 2 +1 3 —1 3J(L+1)(L+2)/(2L+1)
Ofyfor g =2, —5f,forg =4 2 +1 3 +1 31//§,(1,+2)/(21,+1)
0 1 0 1 3 -1 3 -1 0
-2 2 -2 2(L-2)/(2L-1) 3 -1 3 +1 0
-2 2 0 —6(L*—1)(2L+3)/(2L—1),/(2L+1) 3 +1 3 +1 0
-2 3 0 —2y3(L-1)L/J(2L—1) (2L +1) 1 01 o0 0
0 2 0 —(2L-3) (2L+5)/(2L—1) (2L+3) 9 9 2 —9 0
0 2 2 —JJGI;EL+%%/2(LE1)/)(%LL+3)3/(2L+l) > “2 > _O 0
0 3 0 2J2L(L+1)/J@L—-1) (2L+3 a7 )
+2 2 42 2(L+3)/(2L+3) ﬁ —0 3 8 0—3\/2(1,—1)/\/(2L~1) (2L+1)
+2 3 0 —2J3(L+1)(L+2)/J@2L+1)(2L+3) 5 0 2 42 0
03 00 2 0 3 0 343/J/(2L-1) (2L +3)
-1 1 —1 —(L-1)/2L+1) 2 42 2 42 0
-1 1 +1 3JL(L+1)/2L+]1) 2 +2 3 0 3y2L(L+2)/J(2L+1) (2L+3)
+1 1 +1 —(L+2)/(2L+1) 3 0 3 0 0
-1 2 -1 -—(L+5)/(2L+1)
-1 2 +1 =3J(L-1)(L+2)/(2L+1)
+1 2 +1 —(L-—-4)/(2L+1)

Note. In this table 4,/BC/D,/EF stands for A\/(BC)/D./(EF).

TABLE 6. THE COEFFICIENTS g, FOR ¢ = | AND 5

N I-L U'—L A—L ‘ A \
g=1 qg=25
0 -1 -1 -2 —3(L—1)/(2L—1) 3(L—1)/(2L—1)
0 —3/(2L—1) (2L+1) —3L(2L—3)/(2L—1) (2L+1)
-1 +1 0 3JL(L+1)/(2L+1) 6J/L(L+1)/(2L+1)
+1 +1 0 —3/(2L+1) (21.4+3) —3(L+1) (2L+5)/(2L.+3) (2L +1)
2 —3(L+2)/(2L.+3) 3(L+2)/(2L+3)
0 0 -1 3/(2L+1) 3L/(2L+1)
+1 —3/(2L+1) 3(L+1)/(2L+1)
1 -1 -1 -2 3(L—1)/(2L—1) 3(L—1)/(2L=1)
0 3/(2L—=1) (2L+1) 3LJ(2L—-1)
-1 +1 0 —3JL(L+1) J2L+1) 0
+1 +1 0 3/(2L+1) (2L +3) 3(L+1)/(2L+3)
2 3(L+2)/(2L+3) 3(L+2)/(2L+3)
0 0 -1 —3/(2L+1) 3L/(2L+1)
+1 3/(2L+1) 3(L+1)/(2L+1)

Note. In this table 4,/BC/D|EF stands for A,/(BC)/D./(EF).
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TABLE 7. THE COEFFICIENTS g, FOR ¢ = 2 AND 4

 [—-L ¢ I'—LA-L (2A+1) g,
qg=2 g=4
1 0 —1 —3L/2(2L+1) —3(L+3)/2(2L +1)
+1 —3(L+1)/2(2L+1) 3(2—L)/2(2L +1)
2 -2 —1 3y3(L:—1)/y2(2L—1) (2L+1) 3y3(LE—1)/y2(2L—1) (21.41)
2 0 —1 3(L—2)J(2L+3)/2(2L+1)y(2L—1) —3(L+1)J(2L+3)/2(2L+1)J(2L—1)
+1  =3(L+3)J(2L—-1)/2(2L+1)J(2L+3) 3LJ(2L—1)/2(2L+1)J(2L +3)
2 +2 +1 —3J3L(L+2)/y2(2L+1) (2L+3) —33L(L+2)/y2(2L+1) (2L+3)
3 0 —1 BJLL+1)/@ECL+1)y2 —3JL(L+1)/(2L+1)y2
+1 —3JL(L+1)/(2L+1)y2 3VL(L+1)/(2L+1)y2
2 -2 -3 3(L-2)/2L-3) 3(L—~2)/(2L—3)
-1 3/(2L-3) (2L—1) 6(L—1)/(2L—3) 2L—1)
2 0 —1 —y3(L2=1) (2L+3)/(2L—1)y2(2L+1) J3(L*—1) (2L+3)/(2L —1)y2(2L+1)
3 0 —1 —y3(L—1)L/J(2L—=1) (2L+1) J3(L—1) L/J@2L=1) (2L +1)
2 0 —1 (12—13L+2L%)/2(2L—1) (2L+1) (1012 —11L—3)/2(2L—1) (2L+1)
+1 (27+17L+2L%)/2(2L+1) (2L+3) (L0L2+31L+18)/2(2L+1) (2L +3)
2 +2 41 —y3L(L+2) (2L—1)/(2L+3)y2(2L+1) J3L(L+2) (2L—1)/(2L+3)y2(2L+1)
3 0 —1 JLIL+1) (2L+3)/(2L+1)y2(2L—1) = —JL(L+1) (2L+3)/(2L+1)y2(2L—1)
+1 JL(L+1) (2L—1)/(2L+1)y2(2L+3)  —JL(L+1) (2L—1)/(2L+1) y2(2L+3)
2 +2 +1 3/(2L+5) (2L+3) —6(L+2)/(2L+3) (2L45)
+3 3(L+3)/(2L +5) 3(L+3)/(2L+5)
3 0 +1 —J3(L+1) (L+2)/y(2L+1) (2L+3)  Jy3(L+1) (L+2)/J(2L+1) (2L +3)
3 0 —1 L/2L+1) 2L)(2L+1)
+1 (L+1)/(2L+1) 2(L+1)/(2L+1)
1 —1 —2 —3(L-1)/2(2L-1) 3(L—1)/(2L—1)
0 —3L/2L—1) (2L+1) —3(L—1) (2L +3)/2(2L—1) (2L+1)
1 +1 0 —3JL(L+1)/22L+1) —9JL(L+1)/2(2L+1)
2 —1 —2 3y3(L*-1)/2(2L-1) 0
0 —3J3(L2—=1)/(2L—1) (2L+1) 3J3(L2—1)/2(2L+1)
2 +1 0 —33(L+1) (1.+2)/22L+1) —3y3(L+1) (L+2)/2(2L+1)
1 +1 0 3(L+1)/(2L+1) (2L+3) —3(L+2) (2L—1)/2(2L+1) (2L+3)
+2  —3(L+2)/2(2L+3) 3(L+2)/(2L+3)
2 —1 0 3y3(L—1)L/2(2L+1) 3y3(L—1) L/2(2L+1)
2 +1 0 —3J3L(L+2)/(2L+1) (2L+3) —3J3L(L+2)/2(2L +1)
+2  —3y3L(L+2)/2(2L+3) 0
2 —1 —2 3(L-3)/2(2L—-1) 3(L—1)/(2L—1)
0 3(L+2)/(2L—1) (2L+1) 3(2L2+5L—1)/2(2L—1) (2L+1)
2 +1 0 —3J(L—1)(L+2)/2(2L+1) 3J(L—1) (L+2)/2(2L+1)
2 +1 0 —3(L—1)/(2L+1) (2L+3) 3(2L2—L—4)/2(2L+1) (2L +3)
+2 3(L+4)/2(2L+3) 3(L+2)/(2L+3)
1 0 —1 3LJ2L+1) 3L/(2L+1)
+1 3(L+1)/(2L+1) 3(L+1)/(2L+1)
1 —1 —2 3(L-1)/(2L-1) 3(L—1)/(2L—1)
0 6L/(2L—1) (2L+1) 3L/(2L—1)
1 +1 0 3JLL+1)/2L+1) 0
1 +1 0 —6(L+1)/2L+1) (2L+3) 3(L+1)/(2L+3)
+2 3(L+2)/(2L+3) 3(L+2)/(2L+3)

Note. In this table 4{/BC/D JJEF stands for A./(BC)/D.(EF).

Vor. 264. A.
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TABLE 8. THE COEFFICIENTS g, FOR ¢ = 3

2A+1) g
—6/(2L—1)
—3(2L2+L—9)/2(2L—1)

(L+1)

—9J(L—1) (L+2)/2(2L+1)
—3J(L2—1)/2L 1)
3(2L+3)y(L2—1)/

2(2L—1) (2L+1)
—3J(L—1) L/2(2L+1)
—3(2L2+3L—8)/

2(2L+1) (2L+3)
6/(2L+3)
3J(L+1) (L+2)/2(2L+1)
—3(2L=-1)JL(L+2)/

2(2L+1) (2L+3)
gJL(L+2) /(2L +3)

—3(L—1)/2(2L+1)
9JL(L+1)/2(2L+1)
O~3(L+2)/2(2L+ 1)

3(L—2)/(2L—3)
—6(L—2)/(2L—3) (2L—1)
—33(L¥—1) (2L+3)/

(2L—1)y2(2L+1)
—3J(L2-1)]

J2(2L—1) (2L+1)
—3(2L2+5L—9)/

2(2L—1) (2L+1)
—3(202—L—12)/
2(2L+1) (2L +3)

—3J3L(L+2) (2L—1)/

(2L+3) J2(2L+1)
—3(L—1)y3(2L+3)/

2(2L+1) J(2L—1)
3(L+2) y3(2L—1)/

2(2L+1)y/(2L +3)
6(L+3)/(2L+3) (2L +5)
3(L+3)/(2L +5)
3JL(L+2)/y2(2L+1) (2L +3)
3(L+1)/2(2L+1)
3L/2(2L+1)

Note. In this table 4,/BC/DEF stands for A,/(BC) |/DJ(EF).

DO DO [N )

[\ )

o

[ S22 )

[P ORE O)

-1
-1
-1
-1
+1
+1
+1
-1
-1
+1

0

0

=}

S SN N

2

[ SRV 5L )

w w

N W NN W N

Ww N

o

-1
+1
-1
+1
+1
-1
+1
-1

+1
+1

S OO0

S ¢ I-L ¢ I'=L A-L

-2
0

SO ONNOON SOOoONO

l

-1
+1
-1

+1
+1

-1
+1

-1
-1

-1

+1-

-1
+1
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(2A+1) g2
3(L—1)/(2L—1)
3(2L2+5L—1)/

2(2L=1) (2L +1)
gJ(L~ 1) (L+2)/2(2L+1)

—3J(L2—1)/2(2L+1)
—3J(L—1) L)2(2L+1)
3(2L2—L—4)]

2(2L+1) (2L+3)
3(L+2)/(2L+3)
3J(L+1) (L+2)/2(2L+1)
3JL(L+2)/2(2L+1)
0

3(L—1)/(2L—1)
3(2L2+L+1)/
2(2L—1) (2L+1)
—3JL(L+1)/2(2L+1)
3(2L2+3L+2))
2(2L+1) (2L +3)
3(L+2)/(2L +3)
—Lj2L+1)
—(L+1)/(L+1)
—2J3(L-1) L]
J(2L—1) (2L +1)
V2L(L+1) (2L +3)/
(2L+1) J(2L—1)
V2L(L+1) 2L—1)/
(2L +1) J(2L+3)
—2J3(L+1) (L+2)/
J(2L+1) (2L+3)
— J6L(L+1)/(2L+1)
VOL(L+1)/(2L +1)
3(L—2)/(2L—3)
6(L—1) /(2L—3) (2L—1)
J3(L2=1) (2L +3)]
(2L—1) J2(2L+1)
—3J(L*-1)/
J2(2L—1) (2L+1)
(10L2—11L—3)/
2(2L—1) (2L+1)
(10124 31L+18)/
2(2L+1) (2L +3)
V3L(L+2) (2L—1)/
(2L+3) J2(2L+1)
(L+1)y3(2L+3)/
2(2L+1) J(2L—1)
—Ly3(2L—1)/
2(2L+1) J(2L+3)
—6(L+2)/(2L+3) (2L +5)
3(L+3)/(2L +5)
3yL(L+2)/J2(2L+1) (2L +3)
3(L—1)/2(2L +1)
3(L+2)/2(2L+1)
3L/(2L+1)
3(L+1)/(2L+1)
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EXCITATION OF FORBIDDEN LINES IN GASEOUS NEBULAE 87

We introduce 2 (AC|ry) = f :A(rl) Cr) 7, (ryy 1) dry (2:30)
and Ry(4BCD) = [ y,(4CIr,) B(r,) D(r) dr,
= ["4(r) C) yu(BDIr) dr (231)

where 4, B, C and D are radial functions. Denoting the np radial function in 7p4S; L; by P;
we obtain

2
E(nptS;L;) = q (Pi d 2 22

Tar e Ty

Pi) +q(g—1) Ro(P) +2£,(p7, S, L;) Ry(PY), (232)

where the coeflicients* f,(p?,S;L;) are given in table 3. The Hartree-Fock equation for

P;is
: dz 2\ 22 4

[~ (o)~ 2= D) 0o(BAr) 4 Lo (64,8,L) 9 (BRIr) - | Py = 0. (2:33)

The differences between the radial functions P, for different terms S;L; are not large. We

greatly simplify the problem by neglecting these differences. Our procedure is to use a radial
function P obtained on solving the equation

[£,—24(P?|r)+¢] P = 0, (2:34)

where 2=~ (Gt — 2t 2y, () (2:35)
and where terms in y, are neglected. Substituting this function in (2-32) we obtain

E(np®S;L;) = E(np?) +2f5(%, S L;) Ry(P*), (2-36)

where E(npt) = —q(qg—1) Ry(P*) — ge. (2-37)

The total energy in the collision problem is
E = E(npeS; L;) + k3. (2-38)
Putting E = E(np?) + k2, (2-39)
which defines £2, we have
k? = k2—2f,(p1,S;L;) Ry(PY). (2-40)

2-4. Wave functions for the collision problem

The main approximation made in our work is to retain in (2-5) only those ion states
which belong to the np? configuration. The significance of this approximation will be
discussed further in a later paper in the present series.

In table 4 we list the states in np4S;L;ISL. For each value of SL we have two groups of
coupled states, of different parity. The algebraic reductions are greatly simplified if the
orbitals for the colliding electron are taken to be orthogonal to the orbitals for the ionic
electrons. Suppose that we have a function (2-2) with / = 1 and that we construct the anti-

symmetric function ®(npeS, L, pSL) (2-41)

* The coefficients for ¢ = 2 are given incorrectly in the paper by Saraph ¢ al. (1966).

12-2
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88 H. E. SARAPH, M. J. SEATON AND J. SHEMMING

by using (2-3) and (2-4). If we now take the radial function F in (2-2) to be equal to P,
(2-41) must be proportional to ¥'(npe+1SL), where it is to be understood that W (npe+1SL)
vanishes if SL is not allowed in np?*!, Since an arbitrary radial function F may be written
as a linear combination of P and of a function orthogonal to P, we may take the complete
wave function to be of the form

=3 @, (018, L, ISL) + o/ (npr+1SL), (2-42)

il

where it is to be understood that radial functions £}, ;, for / =1 are orthogonal to P,
and that the last term is to be omitted if functions with / = 1 do not occur.

2-5. Reduction of integrals
Using (2:42) we have

Lips pp = 3 (©'(@0) | H—E| @) +a 3 (1) [H—E['¥ (nprSL))

i
+a' 3 (V(nprtISL) | H—E|D(il)) 4 o' a(V (np?*\SL) | H— E|W (np?*1SL)), (2:43)
il )
where we write @’ (¢'l") for ®;.,.(:'l") and D (2!) for @,.,.(il). Using (2-4) we obtain
Q@) |H—E|D(il)) = (@@ (g+1)7"; ¢+ 1) [H—E|@(il| (¢+1) "' ¢+1))
—q(@@l|(g+1)"5 ¢+ D)H—Elp(llg"59) (244)

where the first term on the right-hand side is a direct integral and the second is an exchange
integral. Using (2:27) we readily see that the operator (H— E) in the direct integral may be
replaced by ‘

Hy(g+1)— K+ 3

=17 q+1

where H,(¢+1) = —(VZ,,+2Z]r,,,). When we use orbitals for the colliding electron which
are orthogonal to the orbitals for the ionic electrons, the only term in (H— E) which gives
a non-zero contribution to the exchange integral is 1/r 7, q+1°

For ¢ = 1 Percival & Seaton (1957) obtain

(Q'@V) |H=-E|D)) = (Frp| €, — k| F) 0T, 1l)

H2 (0P L) Ry(PFe PEy) — (= 1)1752 2 63 (pUpl L) Ry (PF By P) - (2:45)
and tabulate expressions for the coefficients f,(pl’ pl; L) and g,(pl’ pl; L). For ¢ > 1 we use
fractional parentage expansions and introduce transformations which interchange coup-

ling orders, so as to obtain states in which the angular momenta are coupled for the electrons
with coordinates ¢ and ¢+ 1. We obtain

(@7 1) | H—E|®(l)) = (Ff,|2,—B|Fy) 80, il
+2f,(71,il; L) Ry(PF}, PF,))—23 g,(i'l',il; SL) R, (PF}, F,, P), (2-46)
A
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EXCITATION OF FORBIDDEN LINES IN GASEOUS NEBULAE 89
where
So@ Uil LY = 8(S;,8,) q[ (2L, +1) (2L, +1)]}
X ;Aq(i’,j) A,(6,0) 2 2L+ 1) W(LLU; Ly 2) W(L,LLL L2 fo(pl'pl; ) (2:47)

>
and g,(¢'l';il; SL) = q[(2L;+1) (2L;4+1) (28] 41) (25;+ 1)]’2‘
X S A,(i',5) A6, J) W(SA3S,35S)
J

XS (22 +1) W(L,1LI; Lo @) W(L,1LL; L2) g, (pl'pl; %) (2-48)
¥

and where W is a Racah coefficient. Reduced expressions for the coefficients f, and g,,
for each transition, as a function of L, are given in tables 5, 6, 7 and 8.
The remaining integrals in (2-43) are evaluated without difficulty. Using (2-4) we obtain

(@' (1) |[H—E|¥ (apr1SL)) = (q+ V! (¢/ (0| (g+1)71; g+ 1) [ H—E|¥ (mpr+1SL)) (2-49)

and on making a fractional parentage expansion of W(np?+1SL) we obtain integrals similar
to the direct integral in (2-44). Using (2:34) we obtain the final result

(O (@) | H=E|¥ (npr+!SL)) = (q+1)* [2do(i'Y', SL) Ro(P°Fyy) +2dy (', SL) Ry (P°Fy )]

(2-50)

where dy('l',SL) = 0(I',1) 4,1 (SL,7"), (2-51)
dy(1'l',SL) = 3 4,1 (SL,0) fo(0'0, 415 L). (2-52)

Theintegral (‘' (npe+ ' SL) | H|'Y (np2+1SL)) (2-53)

is the expectation value for the energy of np?*! calculated using the radial function for npe.
Using (2-32), (2-34) and (2-39) we obtain
(¥ (npt'SL) |[H—E'Y (np?*1SL)) = — (e++4%) +2Ro(P*) 4 2f,(p7*1, SL) Ry(P*).  (2:54)
The parameters a’, o in (2:43) are determined from the variational principle,

d J
F Li"l"’, = O Li’"l"’, e = 0. (2'55)

The final expression for L is then

Liwp, yopr = %(Fi/zlfl‘“klglFil)

+2 3 {fo(€0,il; L) Ry(PF;, PF)) — 2o\, SL) Ry (PF; Fy P)}
4(q+ 1) { 2 2 (@0, SL) Ry (PFy ) H{ Z 2 d,(il, SL) Ry (P°F))}
g 1)
(6+A%) = 2R, (P*) —2f,(p?"1, SL) Ry (P*)

The algebraic calculations in the work of Seaton (19534, 4) were made on expressing all
functions as linear combinations of Slater determinants and using methods described by
Condon & Shortley (1935). Such calculations are very tedious for hand calculations but,
as pointed out by Godfredsen (1966), they can be programmed in a systematic way for a
computer. The method of the present paper, using fractional parentage coefficients, becomes
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extremely complicated if one wishes to include configurations containing two or more in-
complete shells. In such cases computer calculations using a representation of Slater deter-
minants are to be preferred. Dr W. Eissner and Dr H. Nussbaumer, of University College
London, have developed very general computer programs for the algebraic formulation of
collision problems using this method, and these programs have been used for checking all
of the coeflicients given in the present paper.

Expressions for the coefficients for / = [ have previously been obtained by Yamanouchi
& Amemiya (1946) and these are quoted in full by Slater (1960). We find that, for each
value of ¢ and /, constants must be added to their diagonal elements in order to obtain
agreement with our results. When this is done, our results agree in all cases with those of
Yamanouchi and Amemiya, but it is found that there is one misprint in Slater’s tables
(g,(1,L—1,2,L—1; %, L) for g = 4).

2-6. Radial equations

On imposing the condition that [p — L] should be stationary for all variations of the radial
functions, we obtain the radial equations

(Z—ke) Fip+23 fo (02 L) (%) By +{— 22 2.0, s SL) A (PEy) +0 (0, 1) p(e")

4(g+1) [ 3 Zdy(ih, SL) R(PF)] (i, 8Ly (P)
(c+ ) 2Ry (P) 2y (pr1, ST Rypty =0 (25T

_I_

where the parameter (') is adjusted so as to make F;.,, orthogonal to P for /" = 1.

Closed shells are taken into account by redefining the operator . If, in place of np?, we
consider 1s22s22p? for n = 2 and 1s225s22p%3523p? for n = 3, the definition (2-35) of &, is
replaced by

Z—20_Ww, (2-58)
where
d2 [({+1 2Z 2
32"):_(8?2'_ (72 ))_7+mz=l4%(5?”)+2qyo(1’2)+3(n,3)[12%(1’%)+4yo(3§)] (2-59)
and
2 2 .
WE = 91 17) { 2 Yi(Snd) Sut+3(n, 3) yi(S3F1) S5

+d(n, 3) l:(?;i_l“’f) Y1 (PoF)) +%71E%?/1+1 (Pth):I PZ: (2-60)

(Salmona & Seaton 1961). In these expressions, S,, is the ms radial function and, for n = 3,
P, is the 2p radial function. When closed shells are included additional Lagrange multi-
pliers must be included in (2:57).

The coupled equations (2:57) could be solved exactly but we doubt whether the effort
would be justified. Our procedure is to obtain wave functions in approximations which
involve the omission of certain smaller terms in the equations (2-57), and then to correct the
calculated p matrices using variational expressions in which no terms are neglected. This
procedure reduces considerably the length and complexity of the calculations. We believe

that the results obtained should approximate closely to those which would be obtained
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EXCITATION OF FORBIDDEN LINES IN GASEOUS NEBULAE 91

from exact solutions of the coupled equations, and that any error introduced will be small
compared with the errors which result from our main approximation, neglect of coupling
to configurations other than 2p7.

2-7. The exact resonance approximation

In previous work (Seaton 19534, &) it has been found that, for 247 configurations, the
dominant contributions to the collision strengths come from the p-waves, /'’ = /= 1. For
the p-waves (2-57) contains terms in 1 = 0, 1 and 2 and it is found that the A = 0 exchange
coupling terms may be large. In the exact resonance approximation we calculate wave
functionsin the approximation of neglecting all A = 2 terms in the calculation of ion energies,
and in the equations (2:57). In this approximation all terms §; L; in np? have equal energies,
and it is found that the equations for the radial functions can be uncoupled. From the
solutions of these equations we construct trial functions with allowance for energy dif-
ferences, and use these to calculate the corrected matrices ¥ with inclusion of A = 2 terms.
It should be noted that this procedure is fully consistent with the procedure described in
§(2-3) for the calculation of ion functions and ion energies.

Consistently neglecting A = 2 terms we have £? = k2 and, for I’ = [ = 1, equation (2-57)
reduces to

(£ —#%) Fﬂr{— 22.40(1',1) yo(PFy) +4(7')

Ko DA 40 R
R e o X Foo oy
Tt may be shown that o(i's3) = 8(7',8)— (q+1) dy (&) dy(i) (2-62)

and hence that (2-61) may be written

(%) i) P—2y,(PF,) P
P2+ 1)dy () S i) [1o(PF) + G EI NN P~ 0. (209

4

An explicit expression for x(i’) is obtained on multiplying (2-63) by P and integrating. Using
(2-34) we obtain

2R, (P*) } (2-64)

HE) = —2g-+1) o) 3 dol®) R(PF) {1 (™ 5

12

and hence

(&, —k?) F;—2y,(PF,;) P

2(g41) o) 3, ) fno(P) — Ro(PoF) + R TEN TN BN p . (265

If SL is not allowed in p7+! we have d,(¢) = 0 for all ¢. In this case the equations (2-65)
reduce to a single uncoupled equation. Putting F; = % we have

(L, —k2)F —2y,(PF) P = 0. (2-66)
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If SL is allowed in p2*! the solutions of the coupled cquations (2-65) may be expressed in
terms of two functions, # and %. Introducing functions 4(z) such that

2b(1) do(1) = 0, 26%(1) =1 (2:67)
it is rcadily shown that the functions I, = b(¢)# (2-68)

are solutions of (2:65). A second set of solutions is given by
E, — dyfi) g. (2:69)

Substituting (2:69) in (2-65), and using the fact that 2 d§(z) = 1, which follows from (2-51),
we obtain Z

@ 2 2(q+1) Ry(P7g) [24(P?) — (e +-A*)] P _ ,
(&, —Fk?) g+2qy,(Pg) P+~ (e+ k%) — 2R, (PY) = 0. (2-70)
2R,(P39) P
G — .
The function ¢ is defined by G =g+ e+ k) (2-71)
Since P is orthogonal to g, we obtain
2R, (P*%)
@ , .
(P|%) = (6+kz) ’ (2-72)
and substituting (2:71) in (2-70) we obtain
(£ —k%) G + 29|y (PY) — R\(P*¥)] P = 0. (2:73)
The equations for # and ¢ may be combined into a single equation
(L, — k%) ¢+ 2ty (Pp) P+yP = 0, (2-74)
where 7 is such that (14-q) (e+£k?%) (P|¢g) = 2(1+t) Ry(P3¢). (2:75)

The function ¢ is then equal toFfort=—1landto¥ fort = gq.
In order to calculate pX, without neglect of A = 2 terms, we must construct trial functions
with asymptotic form
Fly~ kit {sin (x, +7,) 82, 0) -+ cos (x+7;) phi. (2:76)
T'o do this, we solve the equations for # and ¢ for each of the energies £?. 'The solutions are
denoted by #; and %, and are taken to have asymptotic form

Fy~ k; Hsin (x;+7,) 4 cos (x;47,) Pi('/i)}:} (2:77)
G, ~ ki sin (x;+7;) +-cos (2,41, pi(%)}.
Putting G, =g, —F, =%—(P|9,) P—-% (2-78)
we can readily verify that Il =7.0(0,1) 4+ G, dy(2) dy(2) (2-79)

is a solution of (2:63), with k2 = k?, and has asymptotic form (2-76), and that

o = o) D0, i) =9 (F2) = ()1 () o). (2:80)
The final results for pX in the exact resonance approximation are obtained on substituting
the functions (2:79) into the full expression (2:56) for the L matrix. It may be noted that, in
this approximation, ¥ is symmetric but p? is not symmetric. The exact resonance approxi-
mation will be referred to as the c.r. approximation.
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2-8. The distorted wave approximation

In the distorted wave approximation the wave functions are calculated neglecting
coupling terms and exchange terms. This is used for all partial waves other than the p-
waves. For the more highly jonized systems it can also be used for the p-waves.

In this approximation we solve the equations |

(L0 —k) fu= 0, (2-81)
where Z{? is defined by (2-59), and take the solutions to have asymptotic form
Su~ktsin (x;,4-7;,). (2-82)

It should be noted that this defines the choice of the phase 7, adopted in all of our work.
From the solutions of (2:81) we construct orthogonalized functions

Py =fu=00,0) 3 (Sul) $4=0(1) (PLfi) P
~ —8(n,8) [0(1, 0) (S| £)) S5 +8(, 1) (Pyl fir) Ps]  (2:83)

and trial functions Fip =00 i) Fy (2-84)
to obtain v
Ly =0, il) (Fy| € — K| Fy)

1 9fy(i'1'il; L) Ry(PFy, PE,) —23 g, (i'l,il; SL) R,(PFy, F;, P)
A
4(q+1) [S (i, SL) Ry(PFy0)] [3 da (i, SL) Ry (PF)]
T e R 2R, (P —2f,(p7 L, SL) R, (P -

The distorted wave approximation will be referred to as the d.w. approximation.

(2-85)

2-9. Energy variation of the collision strengths
In LS coupling, p? configurations with ¢ = 2, 3 and 4 contain three terms, §;L;, 1 = 1,2

et 2
and 3 in order of increasing excitation energy. All of our e.r. and d.w. calculations are made
for energies such that £3 > 0, and results for £ < 0 are obtained by extrapolation tech-
niques.

For k% > 0 the collision strengths vary slowly as functions of the energy but, for /r3 <0,
Q(1, 2) contains infinite series of resonances, converging on level 3 (Gailitis 1963; Bely
et al. 1963; Seaton 1966). For astrophysical applications we require reaction rates calcu-
lated for Maxwellian distributions of electron energies. Ifit can be assumed that the Maxwell
distribution function does not vary significantly over energy intervals comparable with the
widths and separations of the resonances, it is permissible to average over resonance struc-
tures before integrating over the Maxwell distribution functions. The collision strengths
Q(1, 2), averaged over resonance structures in the region £ > 0, k3 < 0, will be denoted by
Q(1,2).

We introduce channel indices « = (S;L;/SL) and say that « is open if k2 > 0, and closed
ifk2 < 0. Channel a = (S;L;/SL) is said to be non-degenerate if only one value of /is allowed
for fixed values of S, L., SL and parity. Suppose that we have one non-degenerate closed

i

13 Vor. 264. A.
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channel ¢, and a number of opcn channels a,f, .... It is shown by Gailitis (1963) that
, . 8o 8752
ISl 1855+ L (2:86)

where (|S,4]?) is equal to |S,,|? averaged over resonances, and where |S7,|? is obtained
on calculating |S,,,|? in the region for which all channels are opcn, and extrapolating to
the region in which channel ¢ is closed.

For ¢ == 2 and 4 we have S;L; = 1§, which gives non-degenerate channels. For ¢ = 3
we have S;L, = 2P which can give degenerate channels, but from an examination of
the states listed in table 4 it may be seen that, for ¢ = 3, §3L, gives non-degenerate channels
for all of those states for which there is coupling between S, L; and §,L,. It follows that,
for ¢ = 2, 3 and 4, the Gailitis formula (2:86) may be used to calculate (1, 2).

Values of Q (1,2) are given in the present paper and a further discussion of resonance
structures will be given in a later paper.

2:10. Discussion of the formulation

The present formulation is superior, in the following respects, to that used in carlier work:

(i) The use of wave functions of the form (2:42), in which the orbitals for the colliding
electrons are orthogonal to the orbitals for the ionic electrons, enables us to evaluate the
L matrix without introducing subsidiary approximations. All ‘post-prior’ discrepancics are
thus avoided.

(ii) Results of approximate calculations are corrected using variational methods, and
these methods are such that reciprocity and conservation conditions are satisfied exactly.
In the work of Seaton (19534,b, 1955a) approximate calculations were corrected using
iterative methods, which are less powerful. In some later work (Seaton 1958) variational
corrections to the S matrix were introduced, but that work is unsatisfactory in that the
corrected S matrices are not unitary.

(ii1) The variational principle for p, with a suitable choice of 7, is much superior to a
variational principle for R. Also, in all approximations, the parameter « in (2-42) is deter-
mined variationally. This improves the accuracy of the trial functions.

(iv) In the e.r. approximation, wave functions are calculated with inclusion of exchange
interactions with the core and, in calculating variational corrections, full allowance is
made for energy differences. In the d.w. approximation, energy differences are allowed for
and exchange interactions are included for all partial waves in calculating p*.

(v) Results for £3 < 0 are obtained by extrapolation techniques.

3. CALCULATIONS
3-1. Numerical and computational procedures
(a) lon wave functions and ion energies
Our first calculations for O%* (Shemming 1965) were made using ion functions inter-
polated from the tables of Hartrec, Hartree & Swirles (1939). All subsequent calculations
were made by using ion functions calculated by means of a Fortran computer program
of Professor Charlotte Froese-Fischer (Froese 1967); we are greatly indebted to her for
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providing this program and for writing a supplementary program needed to give radial
functions in a form convenient for our work. We are also indebted to Dr M. Wilson and
Dr S.Budd for their kind and ready co-operation in running this program for us on the
I.B.M. 7090 Computer at Imperial College, London.

Table 9 gives values of the integrals R,(P*) required for the calculations of energy dif-
ferences between 2p4S;L; terms, and table 10 gives some results for energy differences in
O" and O?%'. The energy differences obtained using our method (§2), in which A =2
terms are neglected in calculating the radial functions, are seen to differ by, at most, 3 %,
from the energy differences obtained by Froese (1967), who retains the A = 2 terms in the
wave function calculations. The differences between the calculated and experimental energy
differences are seen to be much larger than this. Throughout the present paper, calculated
energy differences have been used.

TABLE 9. THE INTEGRALS R,(P*) FOR 2p7 10Ns

g=1 g =2 qg=3 g=4 g=>5
A A Al N A
ion R, ion R, ion R, ion R, ion R,
ct 0-2885 N* 0-3331 ot 0-3775 F* 0-4217 Ne* 0-4658

Nz* 0-3818  O2F 04263  F2* 04706  Ne?*  0-5149  Na?"  0-5590
o3t 04731  F3* 0-5176  Ne3*  0-5621  Na3"  0-6064 Mgt  0-6507
F¢t 0-5633  Ne*" 06080 Na*" 06526  Mg*" 06971  Al** 0-7415
Ne5™ 06530  Mgtt  0-7871  Mg®" 07424  AP* 0-7871  Si°t 0-8316

TABLE 10. ION ENERGIES (RYDBERGS)

I II 111
ot E(2D) —E(%S) 0-2718 0-2786 0-2444
E(2P) —E(%S) 0-4530 0-4610 0-3688
o2 E('D)—E(%P) 0-2046 0-2058 0-1848
E(1S)—E(®P) 0-5116 0-5078 0-3936

1 From solutions of Hartree~Fock equations neglecting A = 2 terms.
II From solutions of Hartree~Fock equations including A = 2 terms (Froese 1967).
IIT Experiment.

(b) The exact resonance and distorted wave calculations

Programs for the e.r. and d.w. calculations were written in Atlas Autocode and run on the
University of London Atlas Computer. A typical e.r. run (p-waves only, one ion, three
energies) took about 3 min, and a typical d.w. run (one ion, three energies, all partial waves
giving significant contributions) took about 2 min. The Fox-Goodwin method was used
for evaluation of the y, integrals, (2-30), and Weddle’s rule was used for the calculation of
the definite integrals R), (2-31). As a check on the accuracy of our y, and R, integration
routines, and of adopted step-lengths, we compared our results with those obtained from
the program of Froese; in all cases we obtained agreement to at least 5 significant figures.
Numerov’s method was used for the calculation of radial functions (Hartree 1955, 1957),
asymptotic forms of radial functions were determined using the method of Burgess (1963),
together with a subroutine provided by Dr G. Peach for the evaluation of I" functions of
complex argument.

The exact resonance equations (2:74) are written

(Z0—F) ¢+9P = Wo—2ty, (Pg) P (3:1)

13-2
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and solved by iterating on the right-hand side. At each stage of the iteration 7 is adjusted
in such a way that (2-75) is satisfied (Seaton 19534) and an iteration-variation method is
used (Saraph & Seaton 1962). The convergence is found to be very fast, two or three itera-
tions being sufficient in nearly all cases. When allowance is made for energy differences, the
matrices p‘ and L’ in the e.r. approximation are not symmetric but X = p!— L is sym-
metric. The symmetry of the calculated matrix pX provides a good check on the accuracy
of the numerical work, and on the consistency of the approximation.

The e.r. and d.w. programs give print out of various intermediate results and punched-
card output of R matrices. These cards are used as input to various subsequent programs.

(¢) Calculation of collision strengths

The S matrixis given by S = (1+iR) (1—iR)"! (3-2)
which may be written S = (1+iR)2(1+R?)-L (3-3)
It has already been noted that the elements of R are sometimes very large, and in some cases
it is found that large numerical errors may arise in transforming R from LS to J; j coupling.
We therefore put R = PQ~1!where P and Q are not large. The exact forms used for P and Q

will be discussed in a later paper, but it should be noted here that R is symmetric but that
P and Q may not be symmetric. Since R is symmetric, (3-2) may be written

S = (1+iR) (1+RR)-! (1+iR) (3-4)
Putting R = PQ-! = R = Q-1 P, we obtain
S = (Q+iP) (QQ+PP)-1 (Q+iP). (35)

"This form is convenient for numerical work. The coeflicients required for the transformation
from LS to J;j coupling were calculated using programs supplied by the Atomic Physics
Group at the Meudon Observatory.

All final calculations of collision strengths were carried out on the I.B.M. 360/65 com-
puter at University College London.

3:2. Collision strengths in LS coupling
(a) Energy values

It is convenient to take the independent energy variable to be ¢, = (k,/z)2 For all ions
considered, R matrices were calculated for ¢;= +0-00, 0-05 and 0-10, and for some ions
additional calculations were made for ¢; = 0-25 and 0-50.

We introduce the quantity ¢y; = ¢,—¢,; then z%,, is the energy difference, in rydbergs,
between states 2 and 3. Calculations of Q (1,2), by means of the Gailitis formula (2-86),
were made for ¢ = —ey5, —46,3 and —0-00, where it should be noted that ¢; = —é,,
corresponds to the threshold for the (1,2) transition, ¢, = -+ 0-00.

(b) Partial wave results

Table 11 gives partial wave results for three typical cases, O?"* (¢ = 2), 0" (¢ = 3) and
Ne?* (¢ = 4). In this table we consider only one energy, ¢; = -+ 0-00, and we give e.r. results
for the p-waves and d.w. results for all other partial waves. The partial wave expansions are
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TABLE 11. PARTIAL WAVE CONTRIBUTIONS TO COLLISION STRENGTHS FOR O2*, O+ AND Ne?t,
AND COMPARISON WITH RESULTS OF SEATON (19534, 1955). ALL RESULTS FOR €3 = 0-00

preseﬁt results results of Seaton £1953 b, 1955a)
[ U Q(1, 2) Q(1, 3) Q(2, 3) Q(1, 2) Q(1, 3) Q(2, 3)
0% (¢ = 2)
1 1 1-6644 0-2094 0-0119 1-73 0-195 0-034
2 2 0-7179 0-1250 0-0896 — — 0-434
3 3 0-0026 0-0002 0-0466 — — 0-079
4 4 0-0000 0-0000 0-0085 — e 0-022
=025 0-0000 0-0000 0-0085 — — —
0 2 0-0004 0-0000 0-0352 e — 0-073
2 0 0-0010 0-0000 0-0560 — —-}
1 3 0-0012 0-0000 0-0054 — — —
3 1 0-0023 0-0000 0-0426 — — —
2 4 0-0004 0-0000 0-0000 — — —
4 2 0-0007 0-0000 0-0054 — — —
totals 2-3909 0-3346 0-3097 1-73 0-195 0-642
v O (¢ =13)
1 1 1-3227 0-3925 0-6202 1-4400 0-218 0-595
2 2 0-0998 0-0349 0-4053 0-0170 — 0-827
3 3 0-0001 0-0000 0-0586 0-0032 -— 0-146
4 4 0-0000 0-0000 0-0060 — — 0-043
=025 0-0000 0-0000 ~0-0000 — — —
0 2 0-0044 0-0000 0-0747 0-0032 —~— 0-290
2 0 0-0036 0-0000 0-3110 0-0032 —-}
1 3 0-0003 0-0000 0-0066 — — 0017
3 1 0-0002 0-0000 0-1719 — —}
2 4 0-0001 0-0000 0-0001 — — —
4 2 0-0001 0-0000 0-0860 — — —
~ totals 1-4313 0-4274 1-7403 1-467 0-218 1-918
Ne* (¢ = 4)
1 1 0-9814 0-1185 0-0123 0-76 0-077 (0-00)*
2 2 0-2864 0-0456 0-0623 —_ ——1
3 3 0-0006 0-0001 0-0211 — — (0-24)*
4 4 0-0000 0-0000 0-0035 — -—-J
=025 0-0000 0-0000 0-0006 — — —
0 2 0-0012 0-0000 0-0180 — — (0-03)*
2 0 0-0011 0-0000 0-0406 — ——} )
1 3 0-0008 0-0000 0-0020 - — —
3 1 0-0007 0-0000 0-0226 — — —
2 4 0-0001 0-0000 0-0000 — — —
4 2 0-0002 0-0000 0-0053 — — —
totals 1-2725 0-1642 0-1883 0-76 0-077 (0-27)*

* Values estimated by Seaton (1955) using extrapolation procedures.

seen to converge rapidly for the (1,2) and (1, 3) transitions, which involve a change of ion
spin; for these transitions the p-wave contributions are dominant but the d-wave contribu-
tions are also important. The convergence for (2(1,2) is seen to be slower than that for (1, 3),
which is a consequence of the smaller energy difference for the (1, 2) transition. The partial
wave expansion is seen to converge much more slowly for €2(2, 8); this transition does not
involve a spin change and the contributions from the higher-order partial waves are
largely determined by quadrupole potential coupling.
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(¢) Comparison with previous calculations

Table 11 includes a comparison with the earlier results of Seaton (19536, 19554). For
the p-waves the present e.r. results agree rather well with the earlier and much cruder, e.r.
calculations. ’

For O2" the earlier results, for the total collision strengths €(1,2) and (1, 3) are too
small, owing to neglect of contributions from the d-waves. In the earlier work the con-
tributions to €(2,3) from /> 1 were calculated using distorted wave and coulomb wave
approximations, neglecting exchange and neglecting energy differences. For O?* neglect
of exchange led to the d-wave contribution to (2, 8) being overestimated, and neglect of
energy differences led to the contributions from / > 2 being overestimated.

TABLE 12. COMPARISON OF E.R. AND D.W. RESULTS FOR /-WAVE CONTRIBUTIONS
' TO COLLISION STRENGTHS, AT TWO ENERGIES

Qrr(1,2) QPE(1, 3) QPP(2,3)
f_—"_-——A—_———\ f——_‘—k—_—_\ I A N
ion € e.r. d.w. e.r. d.w. e.r. d.w.
N* 0-0 2-685 1-237 0-304 0-092 0-0301 0-0043
0-1 2671 1-435 0-311 0-133 0-0308 0-0067
ozr 0:0 1-664 1-395 0-209 0-180 0-0119 0-0084
0-1 1-525 1-344 0-202 0-175 0-0101 0-0076
F3t 0-0 1-046 0-956 0-134 0-126 0-0050 0-0040
0-1 0-870 0-816 0:-111 0-105 0-0040 0-0034
Nett 0-0 0-690 0-649 0-088 0-084 0-0029 0-0025
0-1 0-529 0-507 0-066 0-063 0-0030 0-0029
ot 0-0 1-323 0-543 0-393 0-103 0-620 0-133
0-1 1-340 0-675 0-409 0-154 0-646 0-192
F2t 0-0 0-961 0-838 0-310 0-276 0-473 0-385
0-1 0-919 0-840 0-300 0-280 0-452 0-394
Ne3* 0-0 0-666 - 0-628 0-218 0-212 0-319 0-295
0-1 0-587 0-562 0-191 0-187 0-277 0-260
Nat* 0-0 0467 0-447 0-152 0-150 0-218 0-207
0-1 0-380 . 0-363 0-122 0-120 0-175 0-168
Ft 0-0 1-23 0-592 0-138 0-030 0-0187 0-0047
0-1 1-25 0-698 0-143 0-044 0-0197 0-0049
Nezt 0-0 0-981 0-870 0-118 0-096 0-0123 0-0088
0-1 0-960 - 0-882 0-116 0-101 0-0117 0-0092
Na3* 0-0 0-730 0-688 0-089 0-083 0-0068 0-0059
0-1 0-668 0-634 0-081 0-077 0-0058 0-0052
Mg** 0-0 0-538 0-518 0-065 0-063 0-0041 0-0037
0-1 0-459 0-442 0-056 0-053 0-0034 0-0032

(d) Comparison qf e.r. and d.w. approximations

Table 12 gives p-wave contributions to the collision strengths, in the e.r. and d.w. ap-
proximations, for ¢; = +0-00 and 0-10. The difference between the e.r. and d.w. results is
seen to be large for the singly charged ions, but much smaller for the more highly charged
systems. This difference is also seen to decrease as the energy increases, which is what we
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would expect. The d.w. approximations for / > 1 should be much better than the d.w.
approximation for/ = 1. ' '

It is found that the variational corrections L? in (2-23), X = p¢!—Lf, are reasonably
small in all e.r. calculations for / = 1, and in all d.w. calculations for / > 1, and we therefore
conclude that our final results for ¥ should agree closely with results which would be
obtained from exact solutions of the full coupled equations.

The d.w. radial functions may be rather inaccurate for the s-waves. Transitions

S,Ll-> S LI with S,L;=+S/L

involve a change in the ion orbital angular momentum, and hence cannot occurif/ = I’ = 0.
The contributions from (I,/") = (0, 2) and (2, 0) are small, as can be seen from the results
quoted in table 11, and possible inaccuracies in these contributions will not introduce
significant errors in the total S;L; — §; L] collision strengths.

Further checks on the accuracy of our results will be given in a later paper.

TasLE 13. CoLLisION STRENGTHS (2(1, 3) AND (3(2, 3) AT ¢3 = 0:00, 0-05

AND 0:10

€ ion Q(1,3)  Q(2,3) ion Q(1,3) Q(2,3) jon Q(1,3) - Q(2,3)
0-00 Nt 0-342 0-376 ot 0-428 1-74 Ft 0-147 - 0-193
0-05 0-356 0-389 0-445 1-81 0-152 0-200
0-10 0-369 0-397 0-462 1-87 0:157 0-206
0-00 o2t 0-335 0-310 F2t 0-461 1-71 Ne2t 0-164 0-188
0:05 0-345 0-319 0-483 1-77 0-173 0-194
0-10 0-351 0-326 0-500 1-82 0-180 0-201
0-00 F3* 0-280 0-235 Ne3*t 0-427 1-44 Nas* 0-163 0-157
0-05 0-275 0-237 0-431 1-46 0-168 0-161
0-10 0-266  0-238 0-428  1-46 0-170  0-163
0-00 Nett 0-218 0-185 Na#tt 0-359 1-17 Mg‘“r 0-146 0-129
0-05 0-203 0-187 0-346 1-16 0-144 0-131
0-10 0-186 0-186 0:327 1-13 0-141 0-133
0-00 Mg‘*Jr 0-128 0-123 Mg5Jr 0-289 0-942 APt 0-123 0-107
0-05 0-110 0-123 0-266 0-916 0-116 0-108
0-10 0-094 0-122 0-241 0-882 0-109 0-109

(¢) Energy variation of the collision strengths

Table 13 gives values of Q(1, 3) and Q(2, 3) for ¢; =+ 0-00, 0-05 and 0-10.

For Q(1,2) we have to consider energies such that ¢; < 0 but ¢, > 0. Table 14 gives
results for Q(1,2) at energies ¢; = —¢yq, — %6y and —0-00, calculated by the Gailitis
formula (2-86), together with results for ¢; = +0-00, 0-05 and 0-10. The discontinuity
at ¢; = 0-00 is fairly small, which is a consequence of (1, 3) being small compared with
Q(1,2). As a check on the numerical work, it was verified that numerical integration over
resonances gave results in close agreement with those obtained from the Gailitis formula.

(f) Iso-electronic sequences

It may be shown that, as the charge z tends to infinity, z2Q remains finite. In table 15 we
give values of (z2Q)),, = lim (22Q)).

Z—>0
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TaBLE 14. ENERGY VARIATION OF ()(1, 2) (NOTE THAT €; = — €53 GORRESPONDS
Q(1, 2)

e "Nt oz F3* Net* Mgb+
= €y3 2-81 2-45 1-95 1-49 0-866
— 3655 2:99 2-48 1-93 1-46 0-850
—0-00 315 2-50 1-91 1-43 0-833
+0-00 3-05 2-39 1-83 1-38 0-800

0-05 3:10 2:40 1-76 1-28 0-700

0-10 3-14 2-39 1-69 1-17 0-609

ot F2t Ne3* Natt Mgt

—€9q 1-36 . 133 1-14 0-919 0-717
— 3e9q 1-47 1-36 1-14 0-913 0-710
-0-00 1-55 1-38 1-14 0-905 0-703
+0-00 1-43 1-25 1-04 0-836 0-652
0-05 1-46 1-28 1-03 0-799 0-604
0-10 1-48 1-29 1-01 0-755 0-555
Ft Nez+ Nas3t Mgt ALt

— €93 1-16 1-24 1-17 1-02 0-844
—Leps 1-27 129 1-18 1-02 0-835
—0-00 1-37 1-33 1-20 1-02 0-826
+0-00 1-34 1-27 1-14 0-973 0-792
0-05 1-36 1-31 1-15 0-952 0-750
0-10 1-:39 1-34 1-15 0-919 0-701

TABLE 15. VALUES oF (22Q)), = lim (z2()), FOR ¢; = 0-00
(22Q(1, 2))s (22Q(1, 3))o (22Q(2, 3)) o

2and 4 42-8 5-83 12-5

3

q
q 31-6 11-7 66-9

It

TABLE 16. PARTIAL WAVE CONTRIBUTIONS TO COLLISION STRENGTHS (%P}, 2P;)
IN C*(g = 1) anp Ne* (¢ = 5) FOR ¢ = 0-00

Q(2Py, 2Py)
l 1A ct Ne*
1 1 1-0342 0-18381
2 2
0 2
9 0 0-3228 0-05095
0 0
1 3
3 11 0-0559 0-00675
3 3
2 4
. 2} 0-0001 0-00000
4 4 0-0095 0-00139
=U>5 0-0090 0-00133

totals 1-4315 0-24423
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TABLE 17. COLLISION STRENGTHS ()(2P,, 2P;) FOR ¢ = 1 AND ¢ = 5

g =1
\Jon G+ N2+ O3+ Fat Neb*
€\
0-00 1-432 1-097 0-810 0-578 0-433
0-05 1-462 1-097 0-773 0-533 0-387
0-10 1-487 1-088 0-733 0-490 0-347
o g=>5
< Qn Net Na?* Mg+ Al* Sis*
A A | 6
< 0-00 0-244 0-300 0-300 0-277 0-242
> 005 0-255 0-313 0-309 0279 0-236
@) : 0-10 0-265 0-324 0-317 0-278 0-228
= — For ¢ = 1 and 5, at e = 0-00, (z22Q),, = 18:6.
= O
= O
F o TABLE 18. PARTIAL WAVE CONTRIBUTIONS TO COLLISION STRENGTHS
Sg Q(P,, 3P,) IN O%", FOR ¢; = 0-00
= ! v Q(P,P)  Q(P, Py QEP,, °P,)
025 1 1 0-1934 0-0863 0-4361
oz 1 31
=< 3 1 0-0012 0-0291 0-0670
o= 3 3)
0 0
o 2] 0-1812 0-0878 0-4235
9 2 . ) 4935
2 2
I=03>4 0-0000 0-0094 0-0211
totals 0-3758 0-2126 0-9477

TaBLE 19. CoLLisION STRENGTHS Q(3P), 3P,) FOR ¢ = 2 AND 4

€ ion  Q(P,, 3P,) Q(P,, 3P, Q(P,, P, jon Q(3P,, 3P,) Q(P,,%P,) Q(°P,,*P,)
o 0-00 N* 0-401 0-279 1-128 F+ 01735 0-1432 0-539
<, 0-05 0-413 0-281 1-474 0-1780 0-1457 0-551
= 0-10 0-424 0-282 1-164 0-1824 0-1480 0561
< S 0-00 o2 0-376 0-213 0-948 Nez+ 0-1845 0-1314 0-527
= — 0-05 0-385 0-210 0-954 01927 0-1284 0-540
8 i 0-10 0-391 0-207 0-954 0-1997 0-1337 0-551
- 0-00 F3+ 0-219 0-165 0-645 Nad* 0-1769 0-1107 0-471
=i 0-05 0-211 0-160 0-623 0-1813 0-1094 0-473
= O 0-10 0-201 0-154 0-598 0-1832 0-1076 0-472
W
= 0-00 Net* 0-244 0-122 0-578 Mg** 0-1558 0-0908 0-400
0-05 0-230 0-114 0-543 0-1544 0-0874 0-390
0-10 0-215 0-107 0-507 0-1513 0-0843 0-380
0-00 (z22Q), for . . .
q=2and4} 7-52 591 227
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TABLE 20. PARTIAL WAVE CONTRIBUTIONS TO COLLISION STRENGTHS FOR TRANSITIONS
BETWEEN FINE STRUCTURE LEVELS IN O*, ¢, = 0-00

! v QO(Dy, 2Dy)  Q(*Dy, 2Py)  Q(Dy,2Py)  Q(2Dg,*Py)  Q(Dg, Py Q(2Py, 2Py)

| 1 0-8209 0-058%5 0-1896 0-1482 0-2239 0-2482

1 3

3 1} 0-0005 0-0474 0-0474 0-0316 0-1106 0-0001

3 3

0 0

0 g 0-0723 0-1545 0-1622 0-1094 0-3655 0-0148

2 2

I'>4 0-0000 0-0186 0-0186 0-0124 0-0432 0-0000
totals 0-8937 0-2790 0-4178 0-3016 07432 0-2631

TaBLE 21. COLLISION STRENGTHS FOR TRANSITIONS BETWEEN FINE STRUCTURE
STATES IN IONS WITH ¢ = 3

€ ion Q(2Dyg,2Dy)  Q(2Dy,?Py)  Q(2Dy,?Py)  Q(Ds, 2Py)  Q(2Dg,?Py)  Q(*Py, %Py,
0-00 ot 0-894 0-279 0-418 0-302 0-743 0-263
0-05 0-918 0-290 0-435 0-314 0-773 0-276
0-10 0-941 0-302 0-451 0-325 0-803 0-288
0-00 P2+ 0-889 0-282 0-403 0-289 0-782 0-372
0-05 0-917 0-281 0-427 0-309 0-754 0-358
0-10 0-941 0-284 0-444 0-323 0-770 0-357
0-00 Ned+ 0-817 0-234 0-342 0-246 0-619 0-446
0-05 0-806 0-225 0-359 0-262 0-615 0-357
0-10 0-796 0-222 0-363 0-265 0-612 0-326
0-00 Na‘+ 0-696 0-190 0-279 0-201 0-502 0-438
0-05 0-640 0-175 0-287 0-210 0-484 0-294
0-10 0-612 0-170 0-281 0-206 0-473 0-252
0-00 (22Q),, 24-8 13-4 17-3 12:2 339 9-39

In the limit of z large our results will be in error due to neglect of spin-dependent terms
in the Hamiltonian, and other relativistic effects. Even as solutions of the non-relativistic
problem, our results may be appreciably in error in this limit. In the near threshold region
in which we are interested, further resonances can arise from coupling to other closed chan-
nels, such as those involving configurations 252p?+!. From the Galilitis formula it may be
secn that, even in the limit of z large, the collision strengths averaged over these resonances
may be different from the collision strengths calculated neglecting the closed channcls.

3:3. Transitions between fine structure levels
(a) Configurations 2p and 2p°
The configurations 2p and 2p° contain a single 2P term. Table 16 gives partial wave
contributions to Q(2Py, 2P;) for C* and Ne*, calculated using the e.r. approximation for

the p-waves and the d.w. approximation for all other partial waves. Table 17 gives total
collision strengths (2P;, 2P;) for ions in configurations 2p and 2p°.
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(b) Configurations 2p?, 2p3 and 2p*
Using equation (2-14) we obtain

Q(18,3P)) = §(2J+1) Q(1§,%P); Q(D,3P,) = t(2J+1) Q('D,*P) (3-6)
for ions in configurations 2p? and 2p*, and
Q(*48,2D)) = 15(2J+1) Q(*5,2D); Q(*S,%P,) = §(2J+1) Q(*S,*P) (37)

for ions in configurations 2p3. These collision strengths may therefore be obtained from the
results given in tables 13 and 14.

Table 18 gives partial wave contributions to the collision strengths Q(3P,,3P,) for O?*,
The transition (J,J’) = (0, 1) differs from the other two transitions in that it has a zero
quadrupole moment. In consequence the partial wave expansions for (J,J’) = (0,1)
converge much more rapidly. Table 19 gives total collision strengths Q(3P,,3P,) forions in
configurations 2p? and 2p*. Transitions of the type 3P,/ — 3P, /', do not involve a change in
the ion orbital angular momentum, and can occur for / = /" = 0 if J' = J+ 1. It is found

that transitions
3Pys —3P;s and 3P s—>3P,s,

for which the d.w. method may not be too accurate, make significant contributions to the
total 3P, — 3P, and *P, — 3P, collision strengths. :

Table 20 gives partial wave contributions to Q(2D,, 2D,), Q(2D,,?P,) and Q(?P,,2P,)
in O*, and table 21 gives total collision strengths for these transitions in 2p3 ions. Quadru-
pole moments occur only in the 2D, — 2P, transitions. Further results for Q(2D,, 2D,)
at energies ¢; < 0 will be given in a later paper.

We are indebted to our collaborators in this project, Dr S. J. Czyzak, Mr T. K. Krueger
and Dr P.de A.P. Martins, for many helpful discussions, and to Dr Martins for assistance
with the final production work.

The work has been supported by grants from the Science Rescarch Council and from the
Culham Laboratory of the Atomic Energy Research Establishment.

Note added in proof (October 1968)

(i) K. Smith, M. J. Conneely and L. A.Morgan (privatc communication) and
R. J. W. Henry, P. G. Burke and A-L. Sinfailam (private communication) have drawn
attention to an crror in the formulation of the problem of electron collisions with ions in
configurations 1522522p7 given by Smith, Henry & Burke (1966). When this error is
corrected, their formulation should be identical with ours. These authors have calculated
collision strengths from cxact solutions of the coupled equations. Our results agree with
those of Smith, Conneely & Morgan for N* and O?" to within 10 9,. There are slightly
larger differences between our results and those of Henry, Burke & Sinfailam for N*, O*
and O?*, probably due to these authors having used experimental energy differences in
solving the radial equations. _

(ii) Recent work by W. Eissner, H. Nussbaumer, H. E. Saraph & M. J. Scaton (to

14-2
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be published) shows that allowance for coupling between the configurations 2522p% and
252p3 gives rise to near-threshold resonances in the collision strengths for excitation of the
2522p? terms in O%*,

(iii) Small differences between the present results for 2p% ions and those published
previously (Czyzak et al. 1967) are due to the correction of a minor error in one of the
computer programs.

Note added in proof 30 December 1968

The page proofs of tables 5 to 8 have been checked by means of a computer (December,
1968). Working directly from the proofs, the algebraic expressions given in these tables
have been punched as Fortran statements, and a computer program has been written to
calculate numerical values from these expressions and to compare with values obtained
using the program of Drs W. Eissner and H. Nussbaumer. We are indebted to Dr Eissner
for his help with this work. The computer checks revealed several errors which had not
been detected previously. We may hope that tables 5 to 8, as published, are completely
frec of error.
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